首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9682篇
  免费   1980篇
  国内免费   1453篇
化学   7233篇
晶体学   145篇
力学   562篇
综合类   120篇
数学   1217篇
物理学   3838篇
  2024年   12篇
  2023年   248篇
  2022年   260篇
  2021年   350篇
  2020年   525篇
  2019年   498篇
  2018年   400篇
  2017年   398篇
  2016年   543篇
  2015年   554篇
  2014年   601篇
  2013年   783篇
  2012年   873篇
  2011年   904篇
  2010年   664篇
  2009年   658篇
  2008年   622篇
  2007年   567篇
  2006年   460篇
  2005年   436篇
  2004年   394篇
  2003年   361篇
  2002年   373篇
  2001年   325篇
  2000年   188篇
  1999年   191篇
  1998年   152篇
  1997年   112篇
  1996年   109篇
  1995年   94篇
  1994年   92篇
  1993年   58篇
  1992年   47篇
  1991年   64篇
  1990年   50篇
  1989年   30篇
  1988年   28篇
  1987年   23篇
  1986年   14篇
  1985年   16篇
  1984年   3篇
  1983年   5篇
  1982年   7篇
  1981年   6篇
  1980年   4篇
  1978年   2篇
  1971年   2篇
  1959年   1篇
  1957年   2篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
The interplay between cation–π and coinage‐metal–oxygen interactions are investigated in the ternary systems N???PhCCM???O (N=Li+, Na+, Mg2+; M=Ag, Au; O=water, methanol, ethanol). A synergetic effect is observed when cation–π and coinage‐metal–oxygen interactions coexist in the same complex. The cation–π interaction in most triads has a greater enhancing effect on the coinage‐metal–oxygen interaction. This effect is analyzed in terms of the binding distance, interaction energy, and electrostatic potential in the complexes. Furthermore, the formation, strength, and nature of both the cation–π and coinage‐metal–oxygen interactions can be understood in terms of electrostatic potential and energy decomposition. In addition, experimental evidence for the coexistence of both interactions is obtained from the Cambridge Structural Database (CSD).  相似文献   
92.
Phytochemical study of green walnut husks of Juglans mandshurica Maxim. led to the isolation of a new naphthalenone, (4R)-3,4-dihydro-4-butoxy-5-hydroxy-naphthalen-1(2H)-one (1), together with 16 known compounds. Compounds 46, 13, 14 and 17 were isolated from the genus Juglans for the first time, and their chemotaxonomic significance was also evaluated.  相似文献   
93.
A high‐expression epidermal growth factor receptor cell membrane chromatography using the silica gel with the average particle size of 3 μm as the stationary phase carrier coupled with high‐performance liquid chromatography and mass spectrometry was established for the online screening of epidermal growth factor receptor antagonists from Radix Scutellariae (Huang Qin in Chinese), a traditional Chinese medicine. In this study, the growth factor receptor cell membrane chromatography model using the smaller particle size carrier showed a higher efficiency for simultaneous screening baicalein, another one of the potential epidermal growth factor receptor antagonists from Radix Scutellariae extract besides wogonin, which was found in our previous work. The molecular docking result showed the occupancy site and binding mode of baicalein and wogonin with epidermal growth factor receptor tyrosine kinase were similar to gefitinib. The result of the assay for the in vitro inhibitory activity showed that baicalein and wogonin inhibited the growth of the high‐expression epidermal growth factor receptor cell in a dose‐dependent manner and even achieved a better inhibition effect than gifitinib in the low‐dosage range.  相似文献   
94.
A “turn‐on” pattern Fe3+‐selective fluorescent sensor was synthesized and characterized that showed high fluorescence discrimination of Fe3+ over Fe2+ and other tested ions. With a 62‐fold fluorescence enhancement towards Fe3+, the probe was employed to detect Fe3+ in vivo in HeLa cells and Caenorhabditis elegans, and it was also successfully used to elucidate Fe3+ enrichment and exchange infected by innexin3 (Inx3) in hemichannel‐closed Sf9 cells.  相似文献   
95.
Two new coordination polymers (CPs) formed from 5‐iodobenzene‐1,3‐dicarboxylic acid (H2iip) in the presence of the flexible 1,4‐bis(1H‐imidazol‐1‐yl)butane (bimb) auxiliary ligand, namely poly[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ3‐5‐iodobenzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O3′)cobalt(II)], [Co(C8H3IO4)(C10H14N4)]n or [Co(iip)(bimb)]n, (1), and poly[[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ2‐5‐iodobenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] trihydrate], {[Zn(C8H3IO4)(C10H14N4)]·3H2O}n or {[Zn(iip)(bimb)]·3H2O}n, (2), were synthesized and characterized by FT–IR spectroscopy, thermogravimetric analysis (TGA), solid‐state UV–Vis spectroscopy, single‐crystal X‐ray diffraction analysis and powder X‐ray diffraction analysis (PXRD). The iip2− ligand in (1) adopts the (κ11‐μ2)(κ1, κ1‐μ1)‐μ3 coordination mode, linking adjacent secondary building units into a ladder‐like chain. These chains are further connected by the flexible bimb ligand in a transtranstrans conformation. As a result, a twofold three‐dimensional interpenetrating α‐Po network is formed. Complex (2) exhibits a two‐dimensional (4,4) topological network architecture in which the iip2− ligand shows the (κ1)(κ1)‐μ2 coordination mode. The solid‐state UV–Vis spectra of (1) and (2) were investigated, together with the fluorescence properties of (2) in the solid state.  相似文献   
96.
Sandwich ELISA methods have been widely used for biomarker and pathogen detection because of their high specificity and sensitivity. However, the main drawbacks of this assay are the cost, the time-consuming procedure for the isolation of antibodies and their poor stability. To overcome these restrictions, we herein fabricated artificial antibodies based on imprinting technology and developed a sandwich ELISA for pathogen detection. Both the capture and detection antibodies were obtained via an in situ method, with simplicity, rapidity and low cost. The peroxidase mimics, the CeO2 nanoparticles, as signal generators were integrated with the detection antibody. The fabricated artificial antibodies exhibited not only natural antibody-like binding affinities and selectivities, but also superior stability and reusability. The detection limit was about 500 CFU mL–1, which is much lower than that of traditional ELISA methods (104 to 105 CFU mL–1). Furthermore, the capture antibody can disinfect pathogens in situ.  相似文献   
97.
This study utilized high temperature NMR and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry to reveal that appreciable amounts of structural defects are present in the diketopyrrolopyrrole (DPP)–quaterthiophene copolymers (PDQT) synthesized by the Stille coupling polymerization with Pd(PPh3)2Cl2, Pd2(dba)3/P(o-tol)3, and Pd(PPh3)4 catalyst systems. It was proposed that these structural defects were produced via homocoupling side reactions of the C–Br bonds and the organostannane species. Model Stille coupling reactions further substantiated that the amount of structural defects are catalyst-dependent following the order of Pd(PPh3)2Cl2 > Pd2(dba)3/P(o-tol)3 > Pd(PPh3)4. To verify the structural assignments, “perfect” structurally regular PDQT polymers were prepared using Yamamoto coupling polymerization. When compared to the structurally regular polymers, the polymers containing defects exhibited notable redshifts in their absorption spectra. Surprisingly, the “perfect” structurally regular polymers showed poor molecular ordering in thin films and very low charge transport performance as channel semiconductors in organic thin film transistors (OTFTs). On the contrary, all the “defected” polymers exhibited much improved molecular ordering and significantly higher charge carrier mobility.  相似文献   
98.
The DNA structure is an ideal building block for the construction of functional nano-objects. In this direction, metal coordinating base pairs (ligandosides) are an appealing tool for the future specific functionalization of such nano-objects. We present here a study, in which we combine the metal ion coordinating pyrazole ligandoside with the interstrand crosslinking salen ligandoside system. We show that both ligandosides, when combined, are able to create stable multi-copper ion complexing DNA double helix structures in a cooperative fashion.  相似文献   
99.
The combination of N‐heterocyclic and multicarboxylate ligands is a good choice for the construction of metal–organic frameworks. In the title coordination polymer, poly[bis{μ2‐1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole‐κ2N3:N4}(μ4‐butanedioato‐κ4O1:O1′:O4:O4′)(μ2‐butanedioato‐κ2O1:O4)dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each CdII ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole (bimt) ligands. CdII ions are connected by two kinds of crystallographically independent succinate ligands to generate a two‐dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three‐dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.  相似文献   
100.
The title compound, {[Zn4(C8H4O4)3(OH)2(C12H6N2O2)2]·2H2O}n, has been prepared hydrothermally by the reaction of Zn(NO3)2·6H2O with benzene‐1,4‐dicarboxylic acid (H2bdc) and 1,10‐phenanthroline‐5,6‐dione (pdon) in H2O. In the crystal structure, a tetranuclear Zn4(OH)2 fragment is located on a crystallographic inversion centre which relates two subunits, each containing a [ZnN2O4] octahedron and a [ZnO4] tetrahedron bridged by a μ3‐OH group. The pdon ligand chelates to zinc through its two N atoms to form part of the [ZnN2O4] octahedron. The two crystallographically independent bdc2− ligands are fully deprotonated and adopt μ3‐κOO′:κO′′ and μ4‐κOO′:κO′′:κO′′′ coordination modes, bridging three or four ZnII cations, respectively, from two Zn4(OH)2 units. The Zn4(OH)2 fragment connects six neighbouring tetranuclear units through four μ3‐bdc2− and two μ4‐bdc2− ligands, forming a three‐dimensional framework with uninodal 6‐connected α‐Po topology, in which the tetranuclear Zn4(OH)2 units are considered as 6‐connected nodes and the bdc2− ligands act as linkers. The uncoordinated water molecules are located on opposite sides of the Zn4(OH)2 unit and are connected to it through hydrogen‐bonding interactions involving hydroxide and carboxylate groups. The structure is further stabilized by extensive π–π interactions between the pdon and μ4‐bdc2− ligands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号